令和7年度(2025年度)枚方市東部清掃工場の維持管理情報

(令和7年9月末日時点)

◎処分した一般廃棄物の各月ごとの種類及び数量

75 VT		160 = 7 -3 a / 17/ / 1	
種類		燃えるごみ(単位:トン)	
	1号	2号	合計
4月	3,269	3,248	6,518
5月	3,594	772	4,366
6月	3,563	0	3,563
7月	3,630	0	3,630
8月	3,618	0	3,618
9月	集計中	集計中	集計中
10月			
11月			
12月			
1月			
2月			
3月			
累計	17,674	4,020	21,694

処理量を修正する場合があります。

◎冷却設備及び排ガス処理設備にたい積したばいじんの除去

施設名称	除去日
2号湿式有害ガス除去装置	6月14日~6月20日
2号ろ過式集じん器	7月10日~7月16日
	2号湿式有害ガス除去装置

◎排ガス中のダイオキシン類の濃度、ばい煙濃度

							結 果				
		ばい	じん	硫黄酮	發化物	測 定 結 果 窒素酸化物		塩化水素		ダイオキシン類	
採取位置	結果が 温にわた口	自主基準:0.0	1g/N㎡以下	自主基準:	10ppm以下	自主基準:	20ppm以下	自主基準:	10ppm以下	自主基準:0.05ng-TEQ/N㎡以下	
	14010/21	法令基準:0.04	4g/N㎡以下	法令基準:排出総	量4.034Nm²/h以下	法令基準:排出総	量12.527N㎡/h以下	法令基準:排出総	量700mg/N㎡以下	法令基準:0.1ng-TEQ/N㎡以下	
		1号炉	2号炉	1号炉	2号炉	1号炉	2号炉	1号炉	2号炉	1号炉	2号炉
各煙道	5月20日	<0.003	<0.003	<0.5	<0.5	8 2		<1 <1		-	0.0058
各煙道	8月1日	<0.003	☆注補修工事	<0.5	〈0.5 ☆注補修工事		8 ☆注補修工事		〈1 ☆注補修工事		-
各煙道	9月12日	<0.003	☆注補修工事	<0.5	<0.5 ☆注補修工事		☆注補修工事	<1	〈1 ☆注補修工事		-
	各煙道各煙道	帝煙道 5月20日 各煙道 8月1日 各煙道 9月12日	##W世世 得られた日 日本章 1.00 法令基準:00 1号炉 各煙道 5月20日 <0.003 各煙道 8月1日 <0.003 各煙道 9月12日 <0.003	### ### ### ### ### ### ### ### #### ####	### 10-16	日本学・004g/Nmi以下 法令基準: 排出総量4034km/n以下 法令基準 (0.5 公元 本本 本本 本本 本本 本本 本本 本本	### 1	日工金単子:00月g/NII以下 日本金単子:00月g/NII以下 1号炉 2号炉 2号炉 1号炉 2号炉 2号炉	日工業年: 00日g/NIII p	### 日本金年: 10月 日本金年: 10月 1日本金年: 11日本金年: 11日本金和金田本金和金田本金和金田本金和金田本金和金田本金和金田本金和金田本金和金	##WIDE

☆注:2号炉は、令和7年5月9日から9月23日(135日間)基幹改良工事の為、停止予定。

「〇」は、検査実施予定項目。

- 1. 「く」については、定量下限値未満を示しています。 ※2段書きの時は、上段が1号炉の採取日で下段が2号炉の採取日となります。 2. 「一」については、検査実施該当月にあたらないため、検査を実施していません。 〇燃焼室中の燃焼ガスの温度、集じん器に流入する燃焼ガスの温度、煙突から排出される排ガス中の一酸化炭素の濃度 については、連続測定しておりデータ量が多いため、東部清掃工場窓口にて閲覧による公表をしています。
- ◎焼却室中の燃焼ガス温度、集じん器に流入する燃焼ガス温度、煙突から排出ガス中の一酸化炭素濃度(すべて日平均値の月平均値)

1号炉			
	燃焼室中の	集じん器に流入する	排ガス中の
	燃焼ガス温度(℃)	燃焼ガス温度(℃)	一酸化炭素濃度(ppm)
4月	957	172	1
5月	956	174	1
6月	965	175	1
7月	972	177	1
8月	963	178	1
9月	集計中	集計中	集計中
10月			
11月			
12月			
1月			
2月			
3月			
維持管理基準	850°以上	200℃以下	100ppm以下

2号炉			
	燃焼室中の	集じん器に流入する	排ガス中の
	燃焼ガス温度(℃)	燃焼ガス温度(℃)	一酸化炭素濃度(ppm)
4月	996	172	2
5月	992	172	2
6月	☆注 補修工事	☆注 補修工事	☆注 補修工事
7月	☆注 補修工事	☆注 補修工事	☆注 補修工事
8月	☆注 補修工事	☆注 補修工事	☆注 補修工事
9月	☆注 補修工事	☆注 補修工事	☆注 補修工事
10月			
11月			
12月			
1月			
2月			
3月			
維持管理基準	850°以上	200℃以下	100ppm以下

令和7年度(2025年度)枚方市一般廃棄物最終処分場(穂谷2308番地)の維持管理情報

(令和7年9月末日時点)

- ◎埋め立てた一般廃棄物の各月ごとの種類及び数量
- ※平成14年3月をもって埋め立ては終了しています。
- ◎擁壁の点検を実施した日

点 検 月 日	異常の有無
4月 7日	無
5月 7日	無
6月 2日	無
7月 7日	無
8月 4日	無
9月 1日	無
10月 日	
11月 日	
12月 日	
1月 日	
2月 日	
3月 日	

◎浸出水及び周辺地下水水質検査結果

処分場水質検査項目	単位	場所	4月8日	8月14日	1月頃	基準値
		最終処分場浸出水	10:05	分析中	0	*
採取時間	-	1号井戸	12:12	分析中	0	*
		2号井戸	13:20	分析中	0	*
		最終処分場浸出水	晴	分析中	0	*
天候	-	1号井戸	晴	分析中	0	*
		2号井戸	晴	分析中	0	*
		最終処分場浸出水	20.8	分析中	0	*
水温	°C	1号井戸	17.2	分析中	0	*
		2号井戸	17.1	分析中	0	*
		最終処分場浸出水	23.1	分析中	0	*
気温	°C	1号井戸	22.5	分析中	0	*
		2号井戸	23.4	分析中	0	*
		最終処分場浸出水	12.2	分析中	0	5.8~8.6
水素イオン濃度	-	1号井戸	7.9	分析中	0	*
		2号井戸	8	分析中	0	*
		最終処分場浸出水	16	分析中	0	60
生物化学的酸素要求量	mg/l	1号井戸	<0.5	分析中	0	*
	_	2号井戸	<0.5	分析中	0	*
		最終処分場浸出水	16	分析中	0	90
化学的酸素要求量	mg/l	1号井戸	1.8	分析中	0	*
		2号井戸	0.5	分析中	0	*
		最終処分場浸出水	22	分析中	0	60
浮遊物質量	mg/l	1号井戸	25	分析中	0	*
浮遊物質量		2号井戸	3	分析中	0	*
		最終処分場浸出水	<1	分析中	0	800
大腸菌数◆	CFU/ml	1号井戸	_	分析中	1	*
		2号井戸	_	分析中	-	*
		最終処分場浸出水	650	分析中	0	*
塩化物イオン	mg/l	1号井戸	23	分析中	0	*
	_	2号井戸	13	分析中	0	*
		最終処分場浸出水	477	分析中	0	*
電気伝導度	mS/m	1号井戸	36.6	分析中	0	*
		2号井戸	22.7	分析中	0	*
		最終処分場浸出水	17	分析中	0	120(日間平均60)
全窒素	mg/l	1号井戸	_	分析中	1	*
		2号井戸	_	分析中		*
		最終処分場浸出水	0.006	分析中	0	16(日間平均8)
全リン	mg/l	1号井戸	-	分析中	-	*
	_	2号井戸	-	分析中	-	*
		最終処分場浸出水	-	注	-	検出されないこと
アルキル水銀	mg/l	1号井戸	-	注	_	検出されないこと
		2号井戸	_	注	_	検出されないこと
		最終処分場浸出水	_	分析中	-	0.005
総水銀	mg/l	1号井戸	_	分析中	-	0.0005
440.1.200		2号井戸	-	分析中	-	0.0005

- 1. 「<」については、定量下限値未満を示しています。 注:総水銀が検出された時に実施
 2. 「一」については、検査実施該当月に当たらないため検査を実施していません。
 3. 「〇」は、検査実施予定項目。
 4. 「注」のアルキル水銀については、総水銀が検出されたときのみ実施。
 「検出されないこと」とは、定められた測定方法の定量限界を下回ることをいいます。(アルキル水銀の定量限界は0.0005mg/L)
 5. 「※」については、規制対象外項目になります。
 6. 「◆」については、令和7年度より大腸菌群数から大腸菌数へ改正(環境基準の改正は、令和4年4月)

分析項目	単位	場所	4月8日	8月14日	1月頃	基準値
		最終処分場浸出水	-	分析中	-	0.03以下
カドミウム及びその化合物	mg/l	1号井戸	-	分析中	-	0.003以下
		2号井戸	-	分析中	-	0.003以下
鉛及びその化合物	mg/l	最終処分場浸出水 1号井戸		<u>分析中</u> 分析中		0.1以下 0.01以下
超及0.607亿日初	IIIg/I	2号井戸	_	分析中	_	0.01以下
		最終処分場浸出水	-	分析中	-	0.2以下
六価クロム及びその化合物◇	mg/l	1号井戸	-	分析中	-	0.02以下
		2号井戸	-	分析中	_	0.02以下
71. = 7. 1° 7. 0. 11. 0. 46.	,,	最終処分場浸出水		分析中	_	0.1以下
砒素及びその化合物	mg/l	1号井戸 2号井戸		<u>分析中</u> 分析中		0.01以下 0.01以下
		最終処分場浸出水		分析中		1以下
全シアン	mg/l	1号井戸	_	分析中	_	検出されないこと
		2号井戸	-	分析中	-	検出されないこと
		最終処分場浸出水	-	分析中	-	0.003
PCB	mg/l	1号井戸		分析中	_	検出されないこと
		2号井戸		分析中		検出されないこと
トリクロロエチレン	mg/l	最終処分場浸出水 1号井戸		<u>分析中</u> 分析中		0.1以下 0.01以下
1,770011,700	IIIg/I	2号井戸	_	分析中	_	0.01以下
		最終処分場浸出水	_	分析中	_	0.1以下
テトラクロロエチレン	mg/l	1号井戸	-	分析中	-	0.01以下
		2号井戸	-	分析中		0.01以下
		最終処分場浸出水	_	分析中	-	0.2以下
ジクロロメタン	mg/l	1号井戸	-	分析中	-	0.02以下
		2号井戸	-	分析中	-	0.02以下
		最終処分場浸出水	-	分析中	-	0.02以下
四塩化炭素	mg/l	1号井戸	-	分析中	-	0.002以下
		2号井戸	-	分析中	-	0.002以下
		最終処分場浸出水	-	分析中	-	0.04以下
1, 2-ジクロロエタン	mg/l	1号井戸	=	分析中	-	0.004以下
		2号井戸	-	分析中	-	0.004以下
		最終処分場浸出水	-	分析中	_	1以下
1, 1-ジクロロエチレン	mg/l	1号井戸	-	分析中	-	0.1以下
		2号井戸	-	分析中	-	0.1以下
		最終処分場浸出水	-	分析中	-	0.4以下
1, 2-ジクロロエチレン	mg/l	1号井戸	-	分析中	-	0.04以下
		2号井戸	-	分析中	-	0.04以下
		最終処分場浸出水	-	分析中	-	3以下
1, 1, 1-トリクロロエタン	mg/l	1号井戸	-	分析中	-	1以下
		2号井戸	-	分析中	-	1以下
		最終処分場浸出水	-	分析中	-	0.06以下
1, 1, 2-トリクロロエタン	mg/l	1号井戸	-	分析中	-	0.006以下
		2号井戸	-	分析中	-	0.006以下
		最終処分場浸出水	-	分析中	-	0.02以下
1, 3-ジクロロプロペン	mg/l	1号井戸	-	分析中	-	0.002以下
		2号井戸	-	分析中	-	0.002以下
		最終処分場浸出水	-	分析中	-	0.06以下
チラウム	mg/l	1号井戸	-	分析中	_	0.006以下
		2号井戸	-	分析中	-	0.006以下
		最終処分場浸出水	-	分析中	-	0.03以下
シマジン	mg/l	1号井戸	-	分析中	-	0.003以下
		2号井戸	-	分析中	_	0.003以下
		最終処分場浸出水	-	分析中	-	0.2以下
チオベンカルブ	mg/l	1号井戸	-	分析中	-	0.02以下
	-	2号井戸	_	分析中	_	0.02以下
		最終処分場浸出水	_	分析中	_	0.1以下
ベンゼン	mg/l	1号井戸	_	分析中	_	0.01以下
	-	2号井戸	_	分析中	_	0.01以下
		最終処分場浸出水	_	分析中	_	0.1以下
セレン及びその化合物	mg/l	1号井戸	_	分析中	_	0.01以下
		2号井戸	_	分析中	_	0.01以下
		最終処分場浸出水	_	分析中	_	0.5以下
1, 4-ジオキサン	mg/l	1号井戸	_	分析中	_	0.05以下
]	2号井戸	-	分析中	_	0.05以下
		最終処分場浸出水	_	分析中	_	0.5以下
クロロエチレン	mg/l	1号井戸	_	分析中	_	0.002以下
		2号井戸	_	分析中	_	0.002以下
		最終処分場浸出水	_	分析中	_	10
 ダイオキシン類(毒性等量)	pg-TEQ/I	1号井戸	_	分析中	_	10
, 13 (22 M(BLTE)		2号井戸	_	分析中	_	1 1
				・・・カかず		

- 1. 「<」については、定量下限値未満を示しています。
 2. 「一」については、検査実施該当月に当たらないため検査を実施していません。
 3. 「○」は、検査実施予定項目。
 4. 「検出されないこと」とは、定められた測定方法の定量限界を下回ることをいいます。
 (定量限界は、全シアン 0.1mg/L、PCB 0.0005mg/L)
 5. 「※」については、規制対象外項目になります。
 6. 「◇」については、令和7年4月より廃止基準が0.5mg/lから0.2mg/lへ改正(環境基準の改正は、令和4年4月)

	分析項目	単位	基準値						令和	7年度					
\square				4月24日	5月20日	6月25日	7月14日	8月18日	9月16日	2025/10/	2025/11/	2025/12/	2026/1/	2026/2/	2026/3/
	水温	°C	45度以下	23.9	25.0	29.2	31.4	31.8	分析中	0	0	0	0	0	0
	水素イオン濃度(pH)	_	5以上9以下	8.0	7.8	7.9	8.0	7.8	分析中	0	0	0	0	0	0
	浮遊物質量	mg/l	600以下	3	3	3	4	3	分析中	0	0	0	0	0	0
	生物化学的酸素要求量	mg/l	600以下	3.0	1.0	0.9	0.6	0.8	分析中	0	0	0	0	0	0
	塩化物イオン	mg/l	_	5900	8600	7600	9100	9200	分析中	0	0	0	0	0	0
		mg/l	240以下	10	11	23	13	8.9	分析中	0	0	0	0	0	0
	 焼含有量	mg/l	32以下	0.04	0.02	0.01	0.02	0.02	分析中	0	0	0	0	0	0
	n-ヘキサン抽出物質	mg/l	30以下	<0.5	<0.5	<0.5	<0.5	<0.5	分析中	0	0	0	0	0	0
環	(動植物油) n-ヘキサン抽出物質		5以下	<0.5	<0.5	<0.5	<0.5	<0.5	分析中	0	0	0	0	0	0
境	(鉱物油)	mg/l	-							_	0	0		0	0
	亜硝酸性窒素	mg/l		0.49	<0.01	0.05	<0.01	0.20	分析中	0		_	0	_	
項	硝酸性窒素 ————	mg/l	-	4.6	4.8	3.0	3.4	4.9	分析中	0	0	0	0	0	0
目	アンモニア性窒素アンモニア性窒素、亜硝酸性	mg/l	-	0.5	0.4	14	1.9	1.1	分析中	0	0	0	0	0	0
等	アンモーア性 至系、 型 明 酸性 窒素、 硝酸性窒素含有量	mg/l	38以下 ※1	5.5	5.2	17	5.3	6.2	分析中	0	0	0	0	0	0
	フッ素及びその化合物	mg/l	0.8以下	<0.08	0.10	<0.08	<0.08	<0.08	分析中	0	0	0	0	0	0
	ホウ素及びその化合物	mg/l	1以下	0.6	0.3	0.4	0.3	0.4	分析中	0	0	0	0	0	0
	銅及びその化合物	mg/l	3以下	<0.01	-	<0.01	-	<0.01	-	0	-	0	-	0	-
	亜鉛及びその化合物	mg/l	2以下	<0.01	-	<0.01	-	<0.01	-	0	-	0	-	0	-
	鉄及びその化合物 (溶解性)	mg/l	10以下	<0.05	-	<0.05	-	<0.05	-	0	-	0	-	0	-
	マンガン及びその化合物(溶解性)	mg/l	10以下	<0.05	-	<0.05	-	<0.05	-	0	_	0	-	0	-
	クロム及びその化合物	mg/l	2以下	0.03	_	<0.02	_	<0.02	_	0	_	0	_	0	_
	フェノール類	mg/l	1以下	<0.05	_	<0.05	_	<0.05	_	0	_	0	_	0	_
$\vdash\vdash$	セレン及びその化合物	mg/l	0.01以下	0.016 ※3	<0.002	<0.002	<0.002	<0.002	0	0	0	0	0	0	0
					-				_		_	_	_	_	-
	六価クロム化合物	mg/l	0.02以下 ※2	<0.01		<0.01	-	<0.01		0		0		0	-
	カドミウム及びその化合物	mg/l	0.003以下	<0.0003	-	<0.0003	-	<0.0003	-	0	-	0	-	0	-
	鉛及びその化合物 	mg/l	0.01以下	<0.005	-	<0.005	-	<0.005	-	0	-	0	-	0	-
	水銀及びその化合物	mg/l	0.0005以下	<0.0005	-	<0.0005	-	<0.0005	-	0	-	0	-	0	-
	シアン化合物	mg/l	検出されないこと	<0.1	-	<0.1	-	<0.1	-	0	-	0	-	0	-
	砒素及びその化合物	mg/l	0.01以下	<0.005	-	<0.005	-	<0.005	-	0	-	0	-	0	-
	有機燐化合物	mg/l	検出されないこと	<0.1	_	<0.1	-	<0.1	-	0	_	0	_	0	-
	PCB	mg/l	検出されないこと	<0.0005	_	<0.0005	-	<0.0005	_	0	_	0	-	0	-
	チウラム	mg/l	0.006以下	-	-	<0.0006	-	-	-	-	-	0	-	-	-
	シマジン	mg/l	0.003以下	-	-	<0.0003	-	-	-	-	-	0	-	-	-
有	チオベンカルブ	mg/l	0.02以下	-	-	<0.002	-	-	-	-	-	0	-	-	-
害	トリクロロエチレン	mg/l	0.01以下	-	-	<0.002	-	-	_	-	-	0	-	-	=
項	テトラクロロエチレン	mg/l	0.01以下	_	-	<0.0005	_	-	_	_	_	0	_	-	-
目	ジクロロメタン	mg/l	0.02以下	_	_	<0.002	_	_	_	_	_	0	_	_	_
	四塩化炭素	mg/l	0.002以下	_	_	<0.002	_	_	_	_	_	0	_	_	_
					_		_	_	_		_	0	_	_	_
	1,2-ジクロロエタン	mg/l	0.004以下			<0.0004				_		_			
	1,1-ジクロロエチレン	mg/l	0.1以下	-	-	<0.002	-	-	-	-	-	0	-	-	-
	1,2-ジクロロエチレン	mg/l	0.04以下	-	-	<0.004	-	-	-	-	-	0	-	-	-
	1,1,1-トリクロロエタン	mg/l	1以下	-	-	<0.0005	-	-	-	-	-	0	-	-	-
	1,1,2-トリクロロエタン	mg/l	0.006以下	-	-	<0.0006	-	-	-	-	-	0	-	-	-
	1,3-ジクロロプロペン	mg/l	0.002以下	-	-	<0.0002	-	-	-	-	-	0	-	-	-
	1,4-ジオキサン	mg/l	0.05以下	-	-	<0.005	-	-	-	-	-	0	-	-	-
	ベンゼン	mg/l	0.01以下	-	-	<0.001	-	-	-	-	-	0	-	-	-
	ダイオキシン類 (毒性等量)	pg-TEQ/I	10pg-TEQ/以下	-	-	0.0010	-	-	-	-	-	0	-	-	-
ш	(毋は守里/		I .			<u> </u>							<u> </u>		

1.「<」は、定量下限値未満を示しています。

- 7. ※3 セレン基準超過について、4月30日と5月2日に追加調査を実施。
- 2. 「一」については、検査実施該当月に当たらないため検査を実施していません。
- それぞれ、0.004mg/Iと ND(<0.002mg/I)で安全を確認しております。 (浸出水が要因ではありません)
- 3.「〇」は、検査実施予定項目。 4. 「検出されないこと」とは、定められた測定方法の定量限界を下回ることをいいます。
- (定量限界は、全シアン及び有機燐化合物 0.1mg/L、PCB 0.0005mg/L) 5. ※1アンモニア性窒素、亜硝酸性窒素、硝酸性窒素含有量の項目の基準値は、令和2年4月1日より新基準値。
- 6. ※2六価クロム化合物の基準値は、令和5年10月30日より新基準値。
- ◎浸出水処理設備の定期点検及び処理の状況について
- ・浸出水排水処理施設については、平成16年11月より施設を休止しており、定期点検は実施しておりません。 ・当該浸出水については、平成28年度までは穂谷川清掃工場の排水処理施設にて処理した後、下水放流しておりましたが 平成29年4月より処理先を東部清掃工場の排水処理施設に変更して処理した後、公共下水道へ放流しております。
- ◎最終処分場の残余の埋立て容量について
- ※平成14年3月をもって埋め立ては終了しています。